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A model of the structure of a Bazhenov suite and a method for calculating its 
effective thermal conductivity are proposed. 

One of the promising oil fields in the Soviet Union is the deposits of the Berias-Volga 
stage of Western Siberia. They consists of nontraditional rock reservoirs, called a Bazh- 
enov suite. A Bazhenov suite consists of mudstone formations, which were for a long time 
believed to be fluid supports. The commercial oil flow obtained from Bazhenov rocks in Middle 
Basin of the Ob' river marked the beinning of the commercial development of the deposits and 
stimulated the study of the reservoir characteristics of mudstone formations. 

One of the characteristic features of oil deposits in the Bazhenov suite is that there 
is no relationship between the occurrence of deposits and the structural relief, i.e., the 
contours of the oil deposit cannot be determined accurately by modern geophysical methods 
and they cannot be established without wells. But existing drills and core extractors de- 
stroy during the drilling process the loose bazhenites, and cores whose collector properties 
do not correspond to the conditions of the reservoir are raised to the surface. 

In this work a model is proposed for the structure of a Bazhenov suite, the relationship 
between the structure (porosity or emptiness, oil content) and the thermophysical properties 
of the rock is found, and the characteristics obtained are checked under laboratory conditions 
and then extrapolated to reservoir conditions. 

Detailed complex studies, first performed for rocks in the reservoirs of mudstone forma- 
tions for the example of deposits of a Bazhenov suite, showed that their volume consists 
largely of voids of different origin in the matrix and that filtration in the rock reservoir 
occurs along cracks and associated pores, but its magnitude is determined primarily by the 
degree of fissuring. 

According to the investigations of [i], Bazhenov rocks contain the following basic com- 
ponents: sapropel organic matter (general concentration 22.5%); argillaceous and aleurite 
material (34.5%); authigenic, predominantly organogenic, silica (29.5%); dolomite (7.5%); 
calcite (3.5%); and pyrite (2.5%). 

The starting material of Bazhenov rocks, which are most often of a lumpy character, is 
organic silt. In the process of formation of the rock its constituent organogenic silica 
is partially or completely dissolved and sorbed by the clay particles; the plasma parts of 
the organisms (radiolarions) are transformed at the same time and only the contours consisting 
of argillaceous-organic matter remain from the skeletons of the radiolarions. The remainder 
of the free silica (43%) is scattered in the silica-clay-organic mass. The radiolarions are 
cemented by argillaceous matter with hydromicaceous and hydromontmorillonite compositions, 
sometimes containing significant admixture of kaolinite. Calcium, dolomite, and pyrite are 
encountered in the rocks in the form of fine uniformly distributed grains, forming in many 
cases significant accumulations. The following are observed in the cemented bunches and 
lumps: i) primary sedimentation pores of organomineral mass; 2) diagenetic pores, formed by 
kaolinization and calcification; 3) leaching ores; and 4) intertextural microcracks, de- 
veloped along the peripheries of the bunches and lumps, along the laminations of argilla- 
ceous minerals. Intertextural cracks, connecting pores, create a single three-dimensional 
rock reservoir system. 
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Fig. i. Open porosity of Bazhenov rocks versus the 
temperature of the formation. The dots are the ex- 
perimental points and the curve is the average de- 
pendence, t, ~ mk, %. 

The pores and cracks vary in size from 2 to i0 ~m and i to 5 ~m, respectively. The dis- 
tance between horizontal cracks is 7 to i0 mm, the distance in the lamellar varieties extends 
up to 1 mm, and the distance between the vertical (steep) cracks is on the average 15 to 20 
IIml. 

Bazhenov rocks are characterized by the presence of organic matter not only in the pores 
but also in the framework. For formation temperatures above 100~ hydromicatization of mont- 
morillonite occurs in the organic matter (OM) of the rocks, and then the bitumoids are trans- 
formed into a state which is independent of the rock. For this reason the structure of the 
rocks and their open porosity are largely determined by the temperature of the stratum. At 
100~ and higher some of the OM in the framework of the rock is transformed into a liquid 
fraction, thereby increasing the open porosity (Fig. i). 

In addition to the open porosity, which determines the relative fraction of the mobile 
oil, Bazhenov rocks also contain cavities, occupied by the residual oil (residual oil satura- 
tion). The residual oil saturation is represented, as a rule, by the heaviest fractions of 
the oil, trapped in narrow capillaries or blind pores, oil film adsorbed on the rock, etc., 
so that for Bazhenov rocks it is more accurate to call it the residual "bitumen saturation." 
It is obvious that the total porosity must be interpreted to be the sum of the open porosity 
and the residual bitumen saturation. Table i, constructed from the data of [i], shows the 
average indicators of a Bazhenov suite. 

Let us return to the structure of Bazhenov rocks. Photographs of samples of argillace- 
ous deposits, made in an electron microscope, clearly show the lepidoblastic nature of the 
structure of the material, which makes it possible to represent the structure of the rocks 
in the Bazhenov suite as follows (Fig. 2). The plates and leafs i, consisting of silica, 
argillaceous material, and less frequently carbonate material, between which bitumens 3 are 
often situated, in contract with one another along the areas 2 form a porous matrix, whose 
pores contain free 4 and bound 5 hydrocarbons. Free silica, calcite, dolomite, and pyrite 6 
are observed in the matrix in the form of separate isolated inclusions. The matrix is criss- 
crossed with cracks 7, whose volume is small and on the average constitutes not more than 
3%. Unlike the pores, the cracks in the rocks formed as the physical loads on the rocks 
changed, as a result of which their volume is independent of the temperature of the stratum. 

We shall represent the structure of the rocks in a Bazhenov suite by a simplified model, 
which retains the basic features of the real structure (Fig. 3). We shall represent the 
plates in the form of square plates i, in contrast with one another along small areas 2. The 
plates are connected to one another by organic matter 3. The pore space is distributed be- 
tween the open porosity 4 and the closed (residual oil saturation) porosity 5. The silica, 
calcite, dolomite, and pyrite are distributed uniformly in the form of cubic inclusions 6 
in proportion to their volume concentration. The cracks 7 form a uniform structure in the 
form of interpenetrating components with constrictions (fissured structure). 

We shall examine the process of heat transport through this model and, employing the 
methods of the theory of generalized conductivity, we shall derive an analytic expression 
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Fig. 2. Structure of the rocks in a 
Bazhenov suite. 

for its effective thermal conductivity [2]. It is useful to carry out the analysis in several 
stages. 

Stage I. We shall determine the thermal conductivity of the matrix I, consisting of 
bound silica, an argillaceous fraction, and organic matter. Following the method of [2], we 
separate out a unit cell in the model (Fig. 4), consisting of one-fourth plates 1 with a con- 
tact area 2, solid bitumens 3, and one-fourth pores 4. We divide the cell with infinitely 
thin (adiabatic) interlayers through which the heat does not penetrate and we shall determine, 
as in the case of flat walls, the thermal resistance for each section [2]: 

R~ = t d ( S ~ 3 .  (1) 
We connect the thermal resistances in a circuit (Fig. 5) and calculate the total resis- 

tance R of the unit cell: 

1 1 1 +.  2 1 

-R R~. -~ R1 + R5 ~ a  + R,, 

R 2 =  h , R1 hi , R a -  h 
~ X  e (~ -- a:) %e (L -- d) b %b 

R~= h , R s =  h - - I  h , R =  h 
[ U  ~ d: - -  2 (L - -  d) b] ~no (d~ - -  a-~) %ro L2)~ 

We d e n o t e  

Vb ~ ~'b/Xc ' "no=  )~no./~'c , Vro ---- %to/)'~e' a -= -a/L, b = b/L, 

and we assume, based on visual observations, that h' = (h - hz)/h = 1/5. 
into (2), we obtain 

Substituting (3) 

(2 )  

(3) 

%'/%c= a~ + 5~'re(d~--a~)/(4vroq-l) + 2 ( 1 - - d )  bv b + ~ o [ 1 - - d 2 ~ 2 b ( 1 - - d ) l  �9 (4 )  

The dimensions of the unit cell are related with the volume concentrations of the components. 
We denote 

Vno Vb 5, = Vc D o  ( 5 )  
- 9 - "  6 =  v ' 

where 

V = U A ;  V e = h l ~ q - ( h - - . h O a ~ ;  Vb----2h-$(L---d); Vro = 

= ( h - - h  0 ( ~ - - ~ ) ;  Vno= V - - V e - - V r o - - V b =  h[L- - -d~  

I t  i s  e a s y  t o  o b t a i n  f rom t h e  e x p r e s s i o n s  (5)  and (6)  t h e  d e p e n d e n c e s  

(6) 

= 1 - -  a2 - -  2 b  (1 - -  d ) ,  ~ = 2 b  (1 - -  d ) ,  V = 0 , 2  (4d"- + E ) ,  (7) 
6 = 0,2 (d ~ - -  a~). 
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Fig. 3. Model of the structure of a Bazhenov suite; 
I, II, and III are the stages in the determination 
of X. 

Using (5) and (7), we represent the expression (4) for the effective thermal conductivity 
%' of the matrix in the form 

k'/E --7--43 + ~ V b ~ - ~ h o -  ~ 25~ro/(I @4Vro ). (8) 

Stage II. We are studying the stucture II consisting of a continuous matrix and iso- 
lated inclusions. We shall employ the well-known dependence of the effective thermal conduc- 
tivity of such structures [2] on the thermal conductivity kkj and concentration mk of the 
components j, k: 

ki 1 m/, k:~ -- -- , V], k ~ . 

X: 1 1 - -  tn. k: ( 9 )  

1 - -  ~'jt: 3 

We shall calculate based on the formula (9) the thermal conductivity of the mixtures: 
a) X'sil, whose components are the continuous matrix with thermal conductivity X' and free 
silica; b) %cal,' one of whose components is the continuous matrix with silica (%'sil) and 

! 

the other calcite (%cal); c) %'d, the thermal conductivity of one component is %cal and that 
of the second is the thermal conductivity of dolomite; d) %", the thermal conductivity of 
one component is %'d and that of the other is %p. The result of the calculation at the 
second stage is an effective thermal conductivity of the matrix containing inclusions of free 
silica, calcite, dolomite, and pyrite ~". 

Stage III. We determine the effective thermal conductivity of the other system (rock) 
III. The Bazhenov suite is a medium consisting of cracks and pores, one component of which 
is the framework with thermal conductivity X" and the other is cracks filled with oil. The 
formula for the effective thermal conductivity of the fissured structure is presented in [3] 
and has the form 

k/~" = c~M + ~ (I -- c) ~ + 2vc (I -- @(vc + ! -- c), (i0) 

where c = f(mcr), v = %o/%"; and M for strongly fissured structures equals c 2. 

We shall study an example of the calculation of the effective thermal conductivity of 
a typical sample of rock in a Bazhenov suite using the method proposed. The starting data 
for the calculation of the volume concentrations are taken from Table i. 

Stage I. We calculate the thermal conductivity of the matrix, consisting of clay and 
aleurites (Vc), bound silica (Vbs) , and sapropellite organic matter (Vso). We denote the 
volume of this matrix by V', V' = V c + Vbs + Vso. The volume concentrations of the compon- 
ents of this matrix, according to the definition (5), will be as follows: solid component, 
i.e., clay, aleurites, and bound silica, appearing as a constituent of the clay, y = (V c + 
Vos)/V' = 0.70; solid (immobile) bitumoids ~ = Vb/V' = 0.13; free oil ~ = Vo/V' = 0.08; and, 
bound oil (residual oil saturation) 6 = Vro/V' = 0.09. We find the ratios of the thermal 
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Fig. 4. Unit cell: 1-5) sections of 
the unit cell. 

conductivities (3), appearing in the formula (8): Vno = Xno/XC = 0.13/3.0 = 0.04; Vro = 
kro/Xc = 0.04; Vb = Xb/Xc = 0.95/3.0 = 0.32. Using the formula (8) we calculate the thermal 
conductivitiy of the matrix X': 

~ ' / ~ c =  0 , 7 0 - -  4 . 0 , 0 9  ~ 0 , 1 3 . 0 , 3 2 - ~  0 , 0 8 . 0 , 0 4 - ~  2 5 . 0 , 0 9 . 0 , 0 4 / ( 1 ~ 4 . 0 , 0 4 ) =  

= 0 , 4 9 ;  k ' = 3 , 0 . 0 , 4 9 =  1,47. 

Stage II. We calculate the thermal conductivity X'sil of a mixture consisting of the 
continuous matrix (V') with the thermal conductivity X' = 1.47 and inclusions of free silica 
(Vfs) , using the formula (9). The volume concentration of the inclusions of free silica 
m k = mfs = Vfs/(V' + Vfs) = 0.15; the ratio of the thermal conductivity of the inclusions and 
the matrix equals 

v], h =: %'~ = E ~ ' s  =: 3 ,0/1 ,47 = 2,04, then 

�9 t �9 

ksil/~ ::: 1 - - 0 , 1 5 / ( 1 / ( 1 - - 2 , 0 4 ) - - ( 1 - - - 0  15} /3 )=  1,12; s  

= 1 , 4 7 . 1 , 1 2  = 1,64. 

Analogously, using the formula (9), we calculate the thermal conductivity of the mixture 
with calcite inclusions X'cal: 

= ,"ca1: VeafiV' + § = 0 , 0 4 ;  = 

: 3 ,0 /1 ,64  - -  1,82; %ca1 = 1,64 (1 - -  0,04/(1/(1 - -  1,83) - -  (1 - -  o ,04 ) /3 ) )  - 1 ,68 ;  

with dolomite inclusions X'd = 1.76; 

with pyrite inclusions X' = 1.87 = ~". 
P 

Stage III. The rock sample is permeated with cracks, whose volume concentration equals 
3%. From the formula (i0) we calculate the effective thermal conductivity of the entire rock. 
Based on the formulas presented in [2] we find 

c = ] ( m c r  ) = 0 , 9 ;  v = 0 , 1 3 / 1 , 8 7  = 0 , 0 7 ;  s 1 6 3  ~.~ 0 , 9 2 +  

+ 0,07 ( 1 - -  0,9) 2 + 2 . 0 , 0 7 . 0 , 9  ( 1 - -  0 ,9 ) / (0 ,07 .0 ,09  + 1 - -  0,9) = 0,73; 

k = 1 ,87-0 ,73  = 1,37. 

U s i n g  t h e  p r o p o s e d  m e t h o d  we a l s o  c a l c u l a t e d  t h e  t h e r m a l  c o n d u c t i v i t y  o f  s p e c i f i c  s a m p l e s  
of a Bazhenov suite, taken from different depths from the same well. For these samples only 
the composition of the solid phase (m k) and the porosity (volume content of cracks mcr) were 
known. In this approximation the thermal conductivity of such samples can be calculated as 
follows. At the first stage we assume that the thermal conductivity of the argillaceous- 
organic matter equals the arithmetic mean value of the thermal conductivity of the components, 
i.e., the average of the thermal conductivity of clay (Xc = 3), bitumoids (Xb = 0.95), and 
oil (Xo = 0.13): 

= (3,0 ~ 0,95 ~ O, 13)/3 ~ 1,36. 

At the second stage, using the formula (9), we determine the thermal conductivity of 
argillaceous-organic matter with inclusions of pyrite particles. For a sample taken from a 
depth of 2717 m, with a pyrite volume content of m k = 3%, kj = 1.45. At the third stage, 
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Fig. 5. Equivalent circuit of the thermal 
resistances of the unit cell: RI-R 5 are 
the thermal resistances of separate sec- 
tions. 

using the formula (I0), we calculate the effective thermal conductivity of the fissured sample 
(mcr = 3.7%), and in addition the cracks in the sample contain air (%a = 0.03). The effective 
thermal conductivity equals 1.06 W/(m.K). The thermal conductivity of this sample, deter- 
mined experimentally, equals %exp = 0.94. An analogous calculation was also performed for 
two samples taken from a depth of 2731 and 2741 m. The pyrite volume concentrations and the 
porosity equal, respectively, m k = 2 and 5% and mcr = 1.8 and 5.6%. For these samples the 
thermal conductivities calculated and determined experimentally are as follows: Icalc = 1.13 
and 1.01; %exp = i.i0 and 0.80. 

As we can see, the disagreements between the computed and experimentally determined 
values do not exceed 25%, which is comparable to the error in the starting data. Both the 
experimentally obtained and computed values were found at room temperatures and normal pres- 
sure. For conditions within the formation, values of the thermal conductivity of the samples 
of the Bazhenov suite will be different owing to the fact that, first of all, the cracks in 
the rocks contain oil instead of air and, second, the thermal conductivity of the components 
changes somewhat. A calculation using the method indicated above shows that under the condi- 
tions in the formation, i.e., at temperatures of the order of 100~ and a pressure of 50.10 ~ 
Pa, and the values of the effective thermal conductivity are 5 to 10% higher than at room 
temperatures. 

The experimental measurements of the thermal conductivity were performed on the apparatus 
of [7], which is based on the comparative method. The sample had the form of a disk 40 mm 
in diameter and 6-10 mm thick. 

As shown by lithological and geochemical studies, at temperatures above I05~ a sharp 
drop in blocked bitumoids is observed in Bazhenov rocks, which is explained by the trans- 
formation of the blocking asphalt-resin components, coinciding with a jumplike increase in 
the open porosity. With the transition of the blocked hydrocarbons into the free state, the 
volume which they occupied prior to the transition is automatically included in the open pore 
system and the structure of the pore space is transformed, owing to which the pore system 
becomes interconnected. There is a direct dependence between the open porosity and the tem- 
perature of the formation: the higher the formation temperature, the more intensively the 
process of unification of the blind pores and blocked pores into a single hydrodynamic system 
proceeds [i]. Therefore the thermal conductivity of the rock also depends sharply on the 
temperature. 

Thus using the available experimental dependence between the formation temperature and 
the open porosity, the dependence between the temperature and the thermal conductivity both 
in the laboratory and under conditions in the formation can be determined using the method 
developed, which makes it possible to evaluate the thermal conductivity of Bazhenov rocks 
under natural conditions. 

NOTATION 

R and Ri, total thermal resistance of the unit cell and the thermal resistance of separ- 
ate sections; a, b, d, h, hl, L, Si, linear dimensions and areas of the transverse, to the 
heat flow, sections of separate sections of the unit cell; %b, %c, and %o, thermal conduc- 
tivities of bitumens, clays, and oil (hydrocarbons), W/(m.K); ~, $, y, ~, volume concentra- 
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tions of free hydrocarbons (oil), bitumens, argillaceous particles, bound hydrocarbons (resi- 
dual oil saturation); Vi, volumes of separate sections; %', %sil, %cal, %d, %", %, thermal 
conductivities of mixtures of separate components and the effective thermal conductivy of 
the entire Bazhenov suite, W/(m.K); mcr, volume concentration of the cracks; and c and M are 
parameters which depend on mcr. 
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ANALYSIS OF THE CONJUGATE PROBLEM OF EVAPORATION FROM THE WALLS 

OF A LONG CHANNEL 

V. I. Nosik UDC 536.423.1 

The conditions under which the nonequilibrium nature of the evaporation and re- 
distribution of heat in the solid walls must be taken into account in order to 
calculate the heat and mass transfer in a long flat channel are determined. 

The problems of evaporation from the walls of a long channel are encountered in the con- 
struction of models of physicochemical processes in porous media, as well as in the theory of 
heat pipes and dryers. There are two approaches to the solution of problems of this type. 
In the "energy" approach [i, 2] the intensity of the evaporation is determined based on the 
magnitudes of the heat flux flowing up to the evaporating surface, the pressure is assumed 
to be equal to the saturation pressure, and then the gas-dynamic problem with known blow-in 
intensity is solved and the distribution of the gas pressure and temperature of the evapora- 
tion surface T o is found. In the "kinetic" approach [3-5] the temperature of this surface is 
given and the pressure, gas velocity, and evaporation intensity are determined by the methods 
of the kinetic theory of gases. In the gas-dynamic limit (for small Knudsen numbers Kn) a 
relation of the Hertz-Knudsen type [6, 7], relating the flow rate with the temperature T o 
and gas pressure, is used; the pressure and flow rate are determined in the solution of the 
gas-dynamic problem. 

Both approaches are limited, since they do not take into account the conjugate nature 
of the problem: the intercoupling of the heat transport in solid walls, the flow of vapor, 
and the kinetics of evaporation. Indeed, both the temperature of the evaporating surface 
(which is given in the kinetic approach) and the heat flow to it (in the energy approach) 
depend in the general case on the characteristics of heat transfer in the solid walls as well 
as on the characteristics of the flow and of the evaporation. 

It is important to determine the region of applicability of these approximate approaches, 
clarify the necessity for using the conditions of nonequilibrium evaporation, and determine 
the region of "nonuniform" evaporation, when the redistribution of energy and the solution of 
the two-dimensional equation of heat conduction in the solid walls must be taken into account. 
The conjugate problem with uniform heat flow to the wall for low Reynolds' numbers of the 
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